O.P.Code: 20CS0512

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Regular & Supplementary Examinations June-2024 FORMAL LANGUAGES AND AUTOMATA THEORY

		(Common to CSE & CSIT)			
Tiı	ne:	(Anguar all Five Units 5 v 12 = 60 Marks)	Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks) $\boxed{\text{UNIT-I}}$			
1	а	Analyze and explain with example Chomsky Hierarchy.	CO1	L4	4M
•		Convert the following NFA with ε moves to DFA.	CO2	L6	8M
		b a			
		q0 € (q2)			
		a			
		b			
2	9	OR Describe Finite Automata with Output.	CO1	L2	6M
_		Write why minimization of finite automata is required and explain the	CO1	L2 L6	6M
		procedure adapted for minimization of finite automata.	-		0111
		UNIT-II			
3		List out the identities of Regular expression.	CO ₃	L1	6M
	b	From the identities of RE, prove that	CO ₃	L3	6M
		i) 10+(1010)*[^+(1010)*]=10+(1010)* ii) (1+100*)+(1+100*)(0+10*)(0+10*)*=10*(0+10*)*			
		OR			
4	a	C	CO2	L3	6M
		$S \rightarrow aA/bB/a/b$			
		A→aS/bB/b			
		B→ aA/bS			
	b	Construct a regular grammar for the given regular expression	CO1	L6	6M
		$ab(a+b)^*$			
		UNIT-III			
5	a		CO ₄	L1	4M
	b	Construct Leftmost and Rightmost derivation and derivation tree for	CO4	L6	8M
		the string 0100110			
		S→0S/1AA			
		A→0/1A/0B			
		A 70/1A/0B			

		OR			
6	a b	Write the process adapted to convert the grammar into CNF. Convert the following grammar into CNF.	CO4 CO4	L2 L3	4M 8M
-		S→bA/aB			
		A→bAA/aS/a			
		B→aBB/bS/a.			
7	a b	State the formal of PDA. Construct a PDA which recognizes all strings that contain equal number	CO5 CO5	L1 L6	4M 8M
		of 0's and 1's.			
		OR			
8	a	State NPDA.	CO5	L1	2M
	b	Construct a NPDA to accept the language $L = \{WW^R / W \in (a,b)^* \} by$	CO5	L6	10M
		empty stack and final state.			
9	a	Convert the given regular Expression (a+b)*(aa+bb)(a+b)* to TM.	CO6	L3	6M
	b	Discriminate Universal Turing machine.	CO6	L5	6 M
10	a	OR Differentiate PCP and MPCP.	CO6	L4	4M
	b	Find the PCP solution for the following sets.	CO6	L5	8M

A	В
10	101
01	100
0	10
100	0
1	010

*** END ***